鋼筋機械錨固技術
2.12.1 技術內容
鋼筋機械錨固技術是將螺帽與墊板合二為一的錨固板通過螺紋與鋼筋端部相連形成的錨固裝置。其作用機理為:鋼筋的錨固力全部由錨固板承擔或由錨固板和鋼筋的粘結力共同承擔(原理見圖2.1),從而減少鋼筋的錨固長度,節省鋼筋用量。在復雜節點采用鋼筋機械錨固技術還可簡化鋼筋工程施工,減少鋼筋密集擁堵綁扎困難,改善節點受力性能,提高混凝土澆筑質量。該項技術的主要內容包括:部分錨固板鋼筋的設計應用技術、全錨固板鋼筋的設計應用技術、錨固板鋼筋現場加工及安裝技術等。詳細技術內容見行標《鋼筋錨固板應用技術規程》JGJ256。
圖2.1 帶錨固板鋼筋的受力機理示意圖
2.12.2 技術指標
部分錨固板鋼筋由鋼筋的粘結段和錨固板共同承擔鋼筋的錨固力,此時錨固板承壓面積不應小于鋼筋公稱面積的4.5倍,鋼筋粘結段長度不宜小于0.4lab;全錨固板鋼筋由錨固板承擔全部鋼筋的錨固力,此時錨固板承壓面積不應小于鋼筋公稱面積的9倍。錨固板與鋼筋的連接強度不應小于被連接鋼筋極限強度標準值,錨固板鋼筋在混凝土中的實際錨固強度不應小于鋼筋極限強度標準值,詳細技術指標見行標《鋼筋錨固板應用技術規程》JGJ256。
相比傳統的鋼筋錨固技術,在混凝土結構中應用鋼筋機械錨固技術,可減少鋼筋錨固長度40%以上,節約錨固鋼筋40%以上。
2.12.3 適用范圍
該技術適用于混凝土結構中鋼筋的機械錨固,主要適用范圍有:用錨固板鋼筋代替傳統彎筋,用于框架結構梁柱節點;代替傳統彎筋和直鋼筋錨固,用于簡支梁支座、梁或板的抗剪鋼筋;可廣泛應用于建筑工程以及橋梁、水工結構、地鐵、隧道、核電站等各類混凝土結構工程的鋼筋錨固還可用作鋼筋錨桿(或拉桿)的緊固件等。
2.12.4 工程案例
該項鋼筋機械錨固技術已在核電工程、水利水電、房屋建筑等工程領域得到較為廣泛地應用,典型的核電工程,如:福建寧德、浙江三門、山東海陽、秦山二期擴建、方家山等核電站;典型的水利水電工程如:溪洛渡水電站;典型的房屋建筑,如:太原博物館、深圳萬科第五園工程等項目。